Faculty of Science

Bachelor of Computer Application (B.C.A.)

Semester: V Paper: DSE-I

Subject: Statistics and R Programming

Course Outcomes

Course Outcomes						
CO. No.	Course Outcomes	Cognitive				
		Level				
CO 1	Develop a comprehensive understanding of descriptive statistics, including	U, R				
	data classification, tabulation, and graphic representation.					
CO 2	Gain proficiency in correlation and regression analysis techniques and their	U, R, Ap				
	applications in statistical modelling.					
CO 3	Acquire a solid foundation in probability theory and probability	U, Ap, C				
	distributions, and apply these concepts to real-world scenarios.					
CO 4	Enhance skills in data visualization and statistical analysis using R,	An, Ap, C				
	including hypothesis testing and linear regression.					
CO 5	Understand the significance of eigenvalues and eigenvectors in data analysis	U, Ap, C				
	and machine learning, and apply eigenvalue decomposition techniques using					
	R.					

Credit and Marking Scheme

	Credits	Marks		T-4-1 N/L-1
		Internal	External	Total Marks
Theory	4	40	60	100
Practical	2	40	60	100
Total	6		200	

Evaluation Scheme

	Marks		
	Internal	External	
Theory	3 Internal Exams of 20 Marks	1 External Exams	
	(During the Semester)	(At the End of the Semester)	
	(Best 2 will be taken)	<u> </u>	
Practical	3 Internal Exams	1 External Exams	
	(During the Semester)	(At the End of the Semester)	
	(Best 2 will be taken)	,	

Company that

Subject: Statistics and R Programming Paper: DSE-I

Content of the Course **Theory**

No. of Lectures (in hours per week): 2 Hrs. per week

Total No. of Lectures: 60 Hrs.

Maximum Marks: 60

Units	Topics Topics		
Unit-I	Descriptive Statistics Sampling Techniques – Data Classification – Tabulation – Frequency and graphic Representation – Measures of Central Tendency – Measures of Variation – Quartiles and Percentiles – Moments - Skewness and Kurtosis.		
Unit-II	Correlation and Regression Scatter Diagram – Karl Pearson's Correlation Coefficient – Rank Correlation – Correlation Coefficient for Bivariate Frequency Distribution – Regression Coefficients – Fitting of Regression Lines.	10	
Unit-III	Probability Theory and Statistical Inference Random Experiment – Sample Space – Events – Axiomatic Definition of Probability – Addition Theorem – Multiplication Theorem – Baye's Theorem - Applications.	10	
	Statistical Inference- Hypothesis Testing, Estimation, Test of Significance for large samples (Standard Error of Mean), Test of Significance for small samples (t and Z test), Chi-square test and Goodness of Fit, Variance Ratio test (F-test)	15	
Unit-IV	Data Visualization and Statistical Analysis in R Basic Plotting: Creating histograms, bar plots, box plots, and scatter plots using base R. Statistical Analysis in R: Implementing descriptive statistics, hypothesis testing (ANOVA) and linear regression analysis using R.		
Unit-V	Eigenvalues and Eigenvectors: Calculating eigenvalues and eigenvectors, their significance in data analysis and machine learning, application of eigenvalue decomposition in R.	15	

References

Text Books:

- Statistical Methods by S.P. Gupta
- Introductory Statistics with R by Peter Dalgaard
- The R Book by Michael J. Crawley

Reference Books:

- Statistical Methods" by N.G. Das
- Statistical Analysis Handbook" by Dr. Michael J. De Smith
- R for Data Science" by Hadley Wickham and Garrett Grolemund
- An Introduction to Statistical Learning" by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani

List of Practical

- 1. WAP in R to perform t-test.
- 2. WAP in R to perform Chi-square test.
- 3. WAP in R to perform One Way ANOVA.
- 4. WAP in R to perform Two Way ANOVA.
- 5. WAP in R to create basic plots (histogram, bar plot, box plot, scatter plot).
- 6. WAP in R to perform correlation analysis.
- 7. WAP in R to perform linear regression analysis.
- 8. WAP in R to manipulate and clean a dataset (subsetting, filtering, merging).
- 9. WAP in R to calculate eigenvalues and eigenvectors of a matrix.
- 10. WAP in R to perform principal component analysis (PCA) using eigenvalue decomposition.

Sr. Many